
ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

Freedom Imagined:
Morality and Aesthetics in Open Source
Software Design

‘there is no limit to the harm that proprietary software development can do’
http://www.gnu.org/philosophy/shouldbefree.html

James Leach (with Dawn Nafus & Bernhard Krieger)
University of Aberdeen, Intel Corp, & University of Cambridge

abstract This paper is about the interaction between the human imagination and
technology among a self-described ‘community’: that of developers of Free or Open
Source Software. I argue that the moral imagination observable in this phenomenon
can be understood with reference to its emergence around specific methods of
technical production. Principles of openness, truth, freedom and progress, which
are also understood as central to the technical production of good software, are
reinforced (as a ethical orientation) by their contribution to making ‘good’ soft-
ware. A reciprocal dynamic ensues in which better software is seen as dependent
on particular social practices and ideologies while these practices and ideologies
are given salience by their success in fostering valuable production. Processes key
to the generation of this social form are examined before a number of key features
of the practice of programming, such as its often combative and individualistic
character, and an absence of women in developer communities, are considered in
the light of the analysis.

keywords Software, ethics, freedom, progress, social form

This paper is about an interaction between the human imagination and
technology. Its theme is that of how a particular social form comes
into being in a dynamic process; one shaped by the production of

certain artefacts. The focus is a self-described ‘community’ 1: that of devel-
opers of a kind of computer software known as Free, or Libre Software, or
Open Source Software (‘f/loss’, after Ghosh et al. 2002).2 Although there
is a body of literature introducing this phenomenon to which readers may
refer (e.g. Ghosh 1998; Raymond 1998; Kelty 2005a), for readers of this
journal who may not be familiar with it, I set out some of the basic attributes

52

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

james leach

and mechanisms of f/loss after explaining my methodology. These basic
elements are material to my overall argument (and thus part of my ethno-
graphy) which is that computer programmers working within this genre share
a moral imagination of a particular kind that I illustrate can be understood
through reference to its emergence in close relation with specific methods
of technical production. The one is reinforced by the other, and a reciprocal
dynamic ensues in which better computer software is seen as dependent
on particular social practices and ideologies, while certain social practices
and ideologies are given particular salience by their success in fostering the
production of ‘good’ code.

Methodology and Approach
The question of how a particular discursive or ideological form comes into

being as an aspect of wider relations that include the emergence of material
artefacts will clearly involve many factors (cf. Leach 2002). In this instance,
the moral imagination in f/loss is clearly shaped by (and has come to shape)
wider processes in neo-liberal political economy and its forward developments
(see e.g. Benkler 2006; Boyle 1996; Lessig 1999; Weber 2004). My interest is
in tracing how the moral imagination takes a specific form and has a particular
trajectory in f/loss because of its precipitation by a series of technological
processes. I attempt this without myself becoming invested in the political,
social or economic possibilities outlined. That is, I aim to generate a degree
of analytic distance from the material in order to gain an understanding of
the form from without (Strathern 1999 :1–11; Mosse 2006: 937).

In a recent article, Coleman and Golub discuss how liberal philosophies
informing ‘hacker sociality’ 3 contain ‘multiple, though coherent forms’ of
discourse on freedom that ‘embrace[s] several, sometimes conflicting, his-
torical and present-day moral and political sensibilities concerned with a
cluster of commitments’ (Coleman & Golub 2008 : 257). Coleman and Golub
invoke what they term a ‘cultural sensibility’ to refer to this system of linked
perspectives and commitments that, while not monolithic or determinant
of behaviour, are there to be drawn upon (or reckoned with) by people in
particular instances of thought or action. Here I do not replicate that work,
although I appreciate their notion of ‘cultural sensibilities’: my task is not that
of discussing the variations between f/loss programmers’ ideologies and
discourses as variations in liberal perspectives, but of describing the way that
the moral imagination shapes and is shaped by ways of making technology.
This article is intended to complement recent work which discusses the

53Freedom Imagined

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

influence and impact of ideologies around f/loss production (Kelty 2008;
Coleman 2004; Ghosh 2005; Mackenzie 2007) by emphasising the role that
practices in technology production play in shaping emergent social form.
Other problems and questions arise around f/loss (such as those discus-
sed by the authors cited above), but here I am interested in the emergence of
forms of social action which are clearly effective within f/loss (and beyond).
For this reason, I speak of f/loss as a social form. I choose not to talk of an
ideology or discourse because the focus of my argument and of the pheno-
menon under scrutiny is on material practices which, as Ratto has persua-
sively argued, are best understood as simultaneously ideological, discursive
and material (Ratto 2005, and see Mackenzie 2007: 4–6). The interest here
then is not in analysing this community in relation to a particular or general
‘tribe’ (Raymond 1999) or judging the usefulness of descriptions which relate
f/loss to gift exchange systems, kinship systems etc. as has been done el-
sewhere (e.g. Kelty 1999; Zeitlyn 2003). Nor do I attempt to locate variations
in the distribution of ideologies. Differences and distributions within f/loss
may well emerge from the principles I describe, and thus form the subject
for further analysis as such. The examples and instances presented here are
intended to be exemplary (see Strathern 1992:24–5), rather than representative
of various sample populations within the f/loss genre. It is in the sense of
‘encountering general ideas, values, norms and habits of conduct in particular
forms’ (Strathern 1992: 25) that I use the term ‘social form’ and my intent is
exemplify factors in its emergence around people whose self-definition is as
f/loss participants.

Given that this is the interest rather than the sociological or historical
distribution of the form in any particular group of people, I draw upon a
range of different kinds of ethnographic material, ranging from general de-
scriptions of practices in f/loss programming to programmatic statements
made by the ‘elite’ of f/loss, from material collected from communications
over the internet within particular f/loss projects (and around them), to
scholarly literature on f/loss, from my own research with f/loss partici-
pants, to interviews with those active as developers, including the statements
of particular informants who were interviewed by salaried researchers on a
project undertaken for the European Commission in which I was Principal
Investigator in 2004/5. 4

This is an attempt (reminiscent of that suggested by philosopher A. N.
Whitehead (1929) to describe a generative process rather than a social
structure or ideology. The approach picks up the framing of this special

54

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

james leach

issue. According to Whitehead, the analysis of any entity should focus on
the process of its emergence in order not to succumb to an essentialist or a
structurally determinist logic. In this case, the way the imagination builds
on interactions between machines and persons, and indeed persons in the
context of machines demonstrates a process that is neither random, nor
determined, but an outcome of specific possibilities made available to the
imagination by the activity of engaging in certain technical procedures. The
values which emerge and shape the community, while also clearly available
to other people, are given a special salience by the practices of writing com-
puter code specifically in the f/loss mode.

Some Basics about Computer Software,
and about F/LOSS Computer Software

Computer processors operate on the difference between ‘0’s (zeros) and
‘1’s (ones). That is, a pathway for an electrical signal is either to be open or
closed, on or off. So instructions for particular tasks the machine is to per-
form consist of a long series of 0s and 1s in particular configurations. This is
called ‘machine language’ or ‘binary code’. At the lowest level of processing
all the machine does is ‘read’, that is, execute, instructions which are given
as machine language. Human beings cannot effectively write instructions in
such ‘language’. There are far too many digits in any one minor instruction
when dissolved into its binary elements to make that plausible. Instead
computer software programmers write their instructions in human languages
(see Mackenzie 2007: 24–27). For example an instruction written in one of
the many coding languages might be: ‘if “c” is true, then execute “d”’. This
human readable language is then translated into binary language through what
are described as ‘lower level’ programmes called compilers and translators.
These programmes transform each line of the human language into machine-
executable binary code. It is the human readable code which is described as
the ‘source code’: the source of the binary code that runs the machine. Free
or Open Source software is software which allows a user to see, modify and
distribute this source code (DiBona, Ockman & Stone 1999).

When you buy a software programme like Microsoft Word, you receive
the binary code which runs on your machine. However, Microsoft Word
is what is known in f/loss discourse as a ‘proprietary’ programme. When
you buy a piece of ‘proprietary software’, you get a disk which contains the
programme, but which (crucially) is already translated into binary code.
Microsoft have to allow the binary code to transfer onto your machine for

55Freedom Imagined

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

it to do anything. They do not ‘release’, that is, make available to the user/
purchaser, the human readable version of that code (source code in human
readable language). Users cannot see how it has been written, nor adapt or
fix it, should it go wrong or not meet their current requirements.

f/loss programmes are supplied to users with the readable code, and thus
users can understand how the programme works. They are thus enabled 5 to
modify that programme, repair it should it malfunction, or adapt it to other uses
by modifying the source code and adapting the functions of the programme.
This is one distinction between f/loss and proprietary software.

f/loss developers will tell you that the other distinction is in quality.
f/loss software, being open to scrutiny, is both more carefully constructed
and also continually undergoing improvement by the people who use it.
Errors are rapidly and efficiently corrected because of the visibility to users
of the source code, and functions are added as part of the process of writing,
developing and using the software itself. It is axiomatic that f/loss people
share source code with one another and examine and modify this source code
as part of the process of its use. f/loss software projects form self-declared
communities that see themselves as collectively providing a better alternative
to the way in which software is commercially produced and distributed as
a proprietary enterprise.

F/LOSS as Community
f/loss members are highly reflexive about their own practices of produc-

tion and of community. In fact, they have borrowed tropes and metaphors
from anthropology in order to describe themselves. One self-conscious per-
ception is that f/loss developers tend to differ from ‘mainstream’ people in
their attitudes, ambitions, and values, as well of course as in their technical
prowess. They are thus described by one well-known participant as a ‘tribe’
of ‘hackers’ (Raymond 1999). For f/loss people, there is something they call
‘hacker culture’ (see Kelty 2005a), and descriptions of it draw upon notions
of openness, sharing knowledge and information, and a ‘gift economy’ (op.
cit; Kelty 1999) in which (valuable) lines of source code are freely exchanged
between people.6

Normally we think (correctly) of property as the right to exclude others
from using, consuming or benefiting from something. The ownership rights
(copyright) the writer has in a piece of f/loss software specifically run
contrary to this logic. By downloading a f/loss programme and running
it on a computer, the user agrees that because they own copyright over any

56

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

james leach

modifications they make to the source code, they are in a position whereby
they can decide to share those modifications with others on certain con-
ditions. Those are conditions about what the acceptance of the transfer of
source code entails for the receiver. Although there have been a number
of versions, the General Public License (gpl), written by Richard Stallman
of the Free Software Foundation is the original and archetypal instantiation
of this principle. It states that by using this (gpl licensed) software, you agree
to abide by the terms of the license, which are that users agree to provide
their modifications to the code and that they distribute these to others as free
software, i.e. under the same gpl agreement, meaning they grant their users
access to the source code and the right to change and distribute it as gpl
software. Using f/loss software thus requires the acceptance of obligations
to others discharged through artefactual rather than monetary exchange. This
is foundational to participants’ understanding of an emergent community.

There are variations on the gpl which allow for more limited control
over future use in commercial contexts, but in most cases, modifications are
free of price as well as open to scrutiny and development. There are usually
a number of people working on the same software programme – developer
projects – and they share and distribute their inputs with one another, and
indeed the wider world. It is the ‘viral’ nature of the General Public License
which is seen as one of its greatest achievements by participants, ‘infecting’
any new software that utilises f/loss lines of source code, and forcing the
developers of that new software to abide by the license and release the pro-
gramme they have developed as source code for others to subsequently build
upon. A common pool of effective source code is one result. ‘Community’
membership by default (abiding by a delimited and distinct set of obligations
to others) is another.

The Value of Freedom
The practice and discourse around the gpl picks up on the notion of

freedom; the freedoms specifically built into the gpl (to create, change and
modify software, to determine its uses). A better future for all is available as
an imagined outcome of writing code under the gpl. As its author writes:

School should teach students ways of life that will benefit society as a whole. They
should promote the use of free software just as they promote recycling. If schools
teach students free software, then the students will use free software after they
graduate. This will help society as a whole escape from being dominated (and
gouged) by megacorporations.7

57Freedom Imagined

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

f/loss members value their production processes for their open and meri-
tocratic credentials.

The free software community rejects the ‘priesthood of technology’, which keeps
the general public in ignorance of how technology works; we encourage students
of any age and situation to read the source code and learn as much as they want
to know.8

It is axiomatic that anyone can join the community, and indeed can become
significant to software production through developing their skills in writing
source code. Rising in influence and prominence in f/loss is first and foremost
seen as the natural emergence of those with the aptitude and determination
to learn to write good code.

f/loss is an attractive phenomenon for many people. It is routinely held
up as an example of successful production of highly valued software driven
by interest and mutual assistance rather than the profit motive; production
which makes apparent the potential of, and for, collaboration in the newly
networked world (see Ghosh 2005; Benkler 2006). f/loss is cited as the
modern example of productivity outside the frame of conventional intel-
lectual property (see Kelty 2005b), and thus f/loss is seen to work against
the concentration of cultural, artistic and technical materials in large corpo-
rations (e.g. Lessig 2004; Love 2003). It is a source of hope for many, with
its model of sharing knowledge objects for the benefit of a wider community
spawning significant social movements such as Creative Commons.9 These
movements are explicitly inspired by the ethics built in, as it were, to the
production processes and outcomes from f/loss.

More widely, literature in Economics discusses f/loss in terms of reward
and incentive, and the notion of rival and non-rival goods (e.g. Ghosh 1998).
Legal scholars discuss developments of property law and the subversion of
copyright, the public domain and so on (e.g. Lessig 2004; Boyle 2001, 2005;
and see Vaidhyanathan 2001, 2006), others focus on the efficiency of distri-
buted working and the organisational aspects of information production (e.g.
Agrain 2005; Benkler 2001, 2005). Then there are the struggles against large
corporations, the freedom fighter image of a few techno-literates changing
the way the economy works, challenging large capital, and winning (see
Coleman & Golub 2008: 272).

It is undeniable that f/loss programmes are highly successful as computer
software. Most world wide web servers run on ‘Apache’, a large f/loss pro-
ject. The f/loss computer operating system Linux runs much contemporary

58

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

james leach

commercial networked computing. Governments around the globe (including
the US) are migrating their systems to Linux because of its usability and
transparency. In fact, the place where f/loss is least visible, unless you are
an initiate, is on your personal computer desktop.

The f/loss community borrows the language of the anthropologist and
the concept of gift economy to highlight their differences from the standard
practices of the commodity economy in which they successfully operate.
Tropes of progress, and a fairer, more democratic, and safer future appear
continually as aspects of their self description. I now set out to show that the
‘evolution’ of programmes themselves in f/loss is considered as a ‘natural’
process of improvement. This allows both a notion of a ‘natural’ emergence
of hierarchy based on competence, and secondarily encourages an elision of
the moral and descriptive language used of f/loss.

Languages, Judgements, and Establishing Truth
Up to now, I have set out to show how the moral values of community

and progress are embedded in descriptive language in and around f/loss
and how in turn this builds on a sense of the moral agency of f/loss software
as a system of production itself. The technical/organisational procedures,
in other words, precipitate the elision of the practical with the moral. The
process of programming works as a technology of the imagination because it
instantiates a connection with the moral principles outlined by its advocates,
and supports the ‘naturalisation’ of a moralised discourse.

I now aim to show how the process whereby this elision is facilitated is an
aspect of writing code itself in the f/loss manner. I seek to establish three
points. Firstly, that the binary nature of machine language has an imaginative
effect on perceptions of right and wrong for coders. Secondly that the moral
discourse is wrapped up in an aesthetics of code. Judgements made about
code are seen as aesthetic judgements which nevertheless are seen to have
an objective basis in reality (moral judgements and truth claims overlap).
Finally, I will argue that this aesthetics of code generates a conception of
future potential that in turn makes the activity of writing code a version of
exploring and opening up physical and mental frontiers.

As described at the outset, computers are machines which process a long
series of instructions of a binary nature: on and off, yes or no. There are two
metonymical extensions of this principle among participants which are im-
portant: Firstly, that at this level of simplicity, humans can act directly upon
the world external to them. Acts which operate on the simple principle of

59Freedom Imagined

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

true or false are thus more basic than subsequent elaborations that might
be possible upon them. Secondly, that there are, at base, true and untrue
statements. This is a ‘binary’ approach to judgement. The external world
(‘reality’) is an important concept here. What I aim go give a sense of in
the following description is how a particular version of ‘reality’ both comes
into being, and becomes the basis for action. The logic runs something like
this: machines are (essential) tools with which humans manipulate external
reality. The primary concern is to make the tool work; that is, make a tool
which has the desired effect in the external world. And thus people make
judgements about computer code on the basis of how well and efficiently it
works, having in mind that efficient working is because, in some sense, the
code equates more closely with effects in the external world upon which the
machine operates. Importantly, these judgements of fitness or effectiveness
merge with more subjective aesthetic judgements.

Truth statements (‘if “x” is true, then y’) are a central feature of program-
ming languages. The software functions if the truth statements are true.
Often making software ‘work’ is a zero sum situation; it either runs or fails
to run, and f/loss programmers describe the exhilaration of finally making
something ‘work’. As if this aspect of code served as a wider metaphor,
judgements can be – and are – made on the basis of what counts as ‘good
code’ and ‘bad code’ as if this were an objective matter. This sets the tone of
much online discussion in and around software projects. One informant, for
example, reported an instance where a developer was not able to convince
his colleagues about the worth of his code due to his limited English lan-
guage skills (which was the working language for organising the relations of
production in the project). He managed it, however, by claiming he would
let the code speak for its superiority itself.

There is also a traceable fusion of ideas about good and bad code, and
morality and aesthetics, in arguments over which of the multitude of pro-
gramming languages is ‘best’. What constitutes ‘good’ or ‘bad’ in code seems
to depend upon whether f/loss people are talking about Perl, C, Lisp, Java,
Python etc. (to cite just some of the many programming languages). In these
debates, logical arguments are interspersed with appeals to aesthetic criteria
and to ethical/political and economic values. For example in a recent book
by a prominent advocate for f/loss, and within f/loss of the programming
language ‘Perl’, Clay Shirky writes:

60

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

james leach

Perl is a viable programming language today because millions of people woke up
today loving Perl and, more important, loving each other in the context of Perl.
Members of the community listen to each other’s problems and offer answers as
a way of taking care of one another . . . [C]ommunal interest turned out to be a
better predictor of longevity than commercial structure . . . the question ‘Do the
people who like it take care of each other?’ turns out to be a better predictor of
success than ‘What’s the business model?’ As the rest of the world gets access to
the tools once reserved for the techies, that pattern is appearing everywhere, and
it is changing society as it does (2008: 257–259).

The process of establishing truth can be illustrated with reference to the
practice of ‘flaming’ (acrimonious exchanges of messages). Although it is
considered ideal that good code and good languages will speak for themselves,
evaluations are often strongly contested. This practice is consciously endorsed
by members of f/loss. For example, Linus Torvalds, the influential leader of
the Linux Kernel project, recently argued against the utility and value of the
approach and programming language used in a project called ‘Subversion’.10
A key developer on Subversion called Torvalds’ presentation ‘rude almost
beyond belief’, however, he acknowledged that ‘some of his technical points
were valid, and the Subversion developer community has been good about
separating the style from the substance’.11 Later Torvalds explained what he
likes about ‘flaming’ in reference to this exchange:

I like making strong statements, because I find the discussion interesting. In other
words, I actually tend to ‘like’ arguing. Not mindlessly, but I certainly tend to
prefer the discussion a bit more heated, and not just entirely platonic. And making
strong arguments occasionally ends up resulting in a very valid rebuttal, and then
I’ll happily say: ‘Oh, ok, you’re right’.12

Developers then, on occasion, vociferously defend their work or proposals. In
doing so, they demonstrate knowledge and establish what good coding is. These
debates and often heated arguments take place in electronic chat rooms or over
email lists which are open to all members of a project. They are thus almost
public tournaments (‘flame wars’) which may continue for days or weeks.

If coding alludes to knowledge, flaming asserts it in no uncertain terms.
While there is scholarship that argues that online communication lends itself
to flaming (Scott, Semmens & Willoughby 2001; Michaelson & Phol 2001;
Herring 1996), in f/loss it appears from informants that it is particularly
rewarded. Many informants then explain their behaviour as a way to elicit
the objective truth.

61Freedom Imagined

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

Aesthetics and Truth
What emerges is that knowledge is ordered in f/loss processes by two

separate, but related, dynamics. One is that f/loss assumes the existence of
real and true knowledge which is discoverable. The second is that the aspect
of this is the importance of making tools that work on this external reality;
that is, software programmes ‘sit’ in this externalised world; it is their function
to achieve ends in that externalized world. Value claims here are first and
foremost truth claims. The tools and made objects should be determined in
their form by the reality that they are designed to operate upon. Truth also
has the char acteristic of simplicity. People in the f/loss community speak
continually of the elegance and simplicity of good code. Experts can ‘see’ good
code just by looking at the source language. Redundancy and complication
are rejected in this aesthetic of effectiveness.

A central component of the f/loss ethos is that working openly and
sharing the source code of software enables improvements to evolve more
effectively, and that as a whole ‘better’ software is produced (‘Free software
has developed such practical advantages that users are flocking to it for purely
technical reasons’ (Stallman 1999: 69). The concept of ‘better software’ (a
material judgement), which arises from ‘better’ processes of production (a
moral judgement) conceals another complex series of understandings and
judgements generated by familiarity with and proximity to the workings of
the machine (computer) itself.

An ethos of expanding the boundaries of knowledge and making code as
functional as possible stands as its own moral good. Source code that is writ-
ten in a f/loss manner has these potential qualities for participants. Above
all, code must evolve (‘Software development used to be an evolutionary
process’ [before proprietary software firms took control], which was ‘a more
efficient system’.13 A central and common component of the f/loss ethos
is that working openly and sharing code enables evolution to happen more
effectively, and that as a whole ‘better’ code is produced. Language of the
natural (evolutionary process) comes to stand as evidence for the correctness
of this way of proceeding, and thus making a better future.

Code components that are built beautifully and cleverly establish a future
potential by establishing the validity of certain truth claims, and this in turn
makes it possible for others to identify possible future routes for developments
in software. Particularly effective pieces of code are called ‘Good Things’: the
described code is self-evidently worthy. Whereas Good Things are treated as
discrete entities capable of standing for themselves, the knowledge (truth) they

62

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

james leach

reveal is considered to be transferable to other software ends and allow one
to create nearly anything. Because code both enacts knowledge and makes
knowledge evident, in an illocutionary way it reproduces the imagined space
of a frontier by revealing the truth of what exists and thus new potentialities.
Potential future directions based on past development are made convincing
by embedding them in ‘hard’, ‘material’ substance: the machine.

The commitment to this frontier permeates the everyday practices of both
programming in the f/loss mode and creating a f/loss community. It sets
the conditions on which reputations are made, prestige is gained, and software
is designed. It matters not just what sort of software is being developed – i.e.,
what task the software performs – but how the code achieves its goal, how
that demonstrates the fitness of the language used etc.

The beauty of code comes to be an aim in itself in this overlap of practical
and moral truth. Often informants claimed that some proprietary software
projects have not yet opened up their source code because of its messiness;
that is, proprietary software producers would not dare to open source their
code because they were ashamed of how its functionality has been achieved.
The knowledge embodied in and revealed by code are descriptive creations to
them, in other words. They describe a reality (functionality) that is external,
and at the same time the code acts in that external reality: it functions. The
importance of how code works articulates the frontier of knowledge just as much
as, if not more than, the resultant task made possible by the new software.

The ideal of pushing knowledge forever forward also features in the de-
bates surrounding the usability (or otherwise) of open source software. For
instance, employing unstable versions of software is considered to demon-
strate technical competence. It serves as evidence that the author is doing
new exciting work, and it also enables users to develop their knowledge to
adjust or expand the software as appropriate. Because the source code is
available at the point of use, users have much more autonomy and control
over the software versions sitting on their personal machines. Whereas Neff
and Stark (2003) have described the constant state of flux in proprietary soft-
ware as ‘permanently beta’ (‘beta’ referring to a publicly-released test version
of software), in f/loss the situation is acute. This makes certain demands
on and assumptions about users as it is far more difficult to install and use
beta versions of software. The binary judgements of good and bad that are
the building blocks for an entire aesthetic of coding result in a judgement of
quality as an equivalent to code’s value for potential future work.

63Freedom Imagined

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

The relation between aesthetic forms and moral principles is a well estab-
lished area of interest and debate in the history of European and American
thought. The consequence of the f/loss aesthetics of code appear in how
judgements are made about what code is good, and that equates to a sense
of the good code as more real, that is, more effective in achieving its ends
without a waste of resources, without inconsistency and so forth. Reality
is not just effects, but particular effects which equate to moral principles as
well. Aesthetics and morality then combine to produce a powerful sense
that f/loss code can have qualities which make it more fit for use, more
effective in achieving externalised ends, and thus better than other forms
of software.

As the ends to which computer code addresses itself are vitally important:
communication across the globe, sharing information and knowledge, techno-
medical interventions (and so on) there is also another moral imperative to
producing good code – it enhances the possibilities of human advancement.
‘Good Things’, things that work without redundancy, are both aesthetically
pleasing, and morally positive in what they enable others to do. They also
have the potential to reveal the structure of future reality. Readers can access
data supporting these assertions quite directly. The hugely successful f/loss
web browser Firefox has easily accessibly links to ‘evangelism’ advocates
and advice for participation http://www.firefoxevangelism.com. US College
students are encouraged to become ‘Campus Reps’ for these programmes,
advocating on the basis of their superiority in more than just technical terms
(‘Tell everyone you know why you think Firefox is the browser choice of your
generation. Is Firefox prominent on campus? Help make it so!’)14

Autonomy and Progress
The ‘free’ in free software is envisioned as part of a broader ethos of free-

dom of speech and volition rather than as a reference to (zero) price. The key
notion is free as in ‘free speech’, not as in ‘free beer’ (Free Software Foundation
1996). French language here makes the distinction more accurately — libre
rather than gratis. Promoters of logiciel libre (free software) in France, refer
to ethics as necessary for participation. Indeed, the term ‘open source’ tends
to be used in commercial contexts (thus avoiding the problematic associa-
tions in English that ‘free’ has for commercial activities), and free or libre in
public advocacy modes. While some developers are less interested in these
distinctions than others, they do share a consuming enthusiasm for the idea
that coding is its own moral reward.

64

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

james leach

In f/loss moral language is used as if it were straightforward description.
For example, ‘transparency’ is what f/loss stands for. The enclosure of an
intellectual commons is its opposite. So other social movements feed from
the model of f/loss, drawing on a variety of notions which carry moral
implications in the face of the alienating, atomising and greed-inducing
processes of corporate expansion and appropriation. The gift economy (see
Kelty 1999) description is another such trope, suggesting as it does, relations
of kinship (Zeitlyn 2003) and community. Freedom, as an imagined property
of ‘gift economies’, is seen as central, with an extremely high value placed
on individual autonomy and the ways that autonomy is central to people’s
participation in f/loss, and in turn, how its acceptance and validity can be
demonstrated and enhanced by f/loss production.

The idea that the proprietary software social system – the system that says you
are not allowed to share or change software – is antisocial, that is unethical, that
it is simply wrong, may come as a surprise to some readers. But what else could
we say about a system based on dividing the public and keeping users helpless?
(Stallman 1999:54).

The model has had great purchase then beyond the actual development of
code in part because the ethos and approach to this technical activity draws
upon well established and highly valued principles of individual autonomy,
of meritocracy, and of progress. But what f/loss has achieved for its parti-
cipants and supporters is that the realisation of such ideals seems attainable
through the specific process of writing and circulating source code.

Individual Moral Frontiers
‘Better’ code demands continual improvement, and f/loss programmers

concieve of themselves as working on a technological (and generative/creative)
frontier (cf. Helmreich 1996). Being on the cutting edge of technology serves
as is its own goal for many. This process has been likened to craft production
(Coleman 2001) in that members often describe their motivation to work in
projects as providing the reward of problem solving, ‘scratching an itch’ by
producing a tangible solution to a defined problem (Raymond 1999).

However the craft in question is satisfying only when it is seen in terms
of a model of knowledge that locates agency and activity within the tech-
nologist, who thereby himself pushes back the frontier of knowledge. Here
we see the personal and the moral interlink in the activity of writing f/loss
code. Pursuing one’s ‘craft’ is also to behave ethically and to have a positive

65Freedom Imagined

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

influence in society. The moral is presented as if it were merely an outcome
of writing source code and fulfilling one’s personal ambitions.

On this frontier of knowledge, tradition and repetition have no place other
than as building blocks upon which to take one’s own work further. Ullman
(1997) describes working as a programmer as a process of sitting at the edge
of fractal knowledge. There is always more to know, and there will always be
more languages and technologies available than any one person can know.
She thinks certainty is important in such an enterprise: one has to be quite
certain that one’s knowledge is ‘enough’, even though it almost never is.
No one can claim absolute expertise in such a wide and rapidly developing
domain (see also Downey 1998).

I pointed to an elision of moral and descriptive language in and around
f/loss. And it is here that the imagination plays such a significant role. For
f/loss participants, writing source code is progressive. It allows the human
race development it otherwise would not have, such as increased control of
the environment, better communication etc. There is then a wider purpose
to coding. It has moral weight above and beyond the desires of the program-
mer to problem solve or be creative for their own satisfaction. Ethics and the
imagination of a better future merge here into an unquestioned ‘righteous’
quality to f/loss software. Ethics and politics are pursued through making
material objects which then in themselves, without the need for ‘social’ ac-
tion, achieve political ends.

Conclusion: Hierarchy and Gender
The paper so far has been based on an analytic premise. I have been

concerned to trace the process of the emergence of ideas of freedom and its
value as aspects of an emergent social form which includes the production
of effective technologies. Having done this, I am now going to turn briefly to
look at one aspect of the sociological distribution of these forms. This is not
to extend my argument, but to demonstrate the power of the inter-relation
of technical processes and ideas that I have described. The efficiency with
which these procedures have shaped the imagination is perhaps most clearly
shown by certain aspects of f/loss in which their precedence over other
considerations is dramatically demonstrated. That is, other values, while
available to participants, and endorsed by them, are not congruent with the
technical organisation of f/loss, and are therefore elided.

There are some arresting aspects of f/loss, if viewed as a social move-
ment. The most striking of which is a potential contrast between a central

66

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

james leach

ethic of freedom and meritocracy, and an extremely low participation of
women. In fact, (Ghosh et al. 2002) discovered through extensive surveys
and questionnaires among the community that less than 2 percent of active
developers were women in 2002. In certain spheres of contemporary life
gender exclusion is accepted, sports teams being an obvious example in
Europe and America. So there is nothing terribly surprising about the num-
ber of women participants of itself. However, given the ideology of freedom
which is central to the formation of these groups, and the contexts in which
f/loss is written, it does seem to require sociological explanation.15 While
the numbers of women in computer science generally is lower than that of
men (with 72 percent of coders who work in proprietary software contexts
being male (National Science Foundation 2004) the figures in f/loss are
remarkable. Another aspect one might find surprising on second glance is
that there is an extremely hierarchical system of authority which operates in
f/loss projects, and moreover, that authority is often enforced in displays of
aggressive argument and belittling of others, as discussed above.

It is important that readers understand that I neither aim to criticise, nor
to excuse, what occurs in the production of f/loss. My aim has been a de-
scription of how and why the community of developers comes to take the
social form that it does. That description inevitably involves perceptions of
‘the social’ among f/loss participants as well as of the machine, of code, and
of material effect. For here we see a clear example of a social creation in a
holistic sense. Morality and ethics are inseparable from the objects which the
community produces. Politics, and an imagined future, are pursued through
the construction and development of software, of objects, which themselves
are to carry the burden of, and are believed to instantiate, an ethical and
moral vision. Politics in this case can be engaged though writing software
in a particular manner. ‘Computer users should be free to modify programs
to fit their needs, and free to share software, because helping other people
is the basis of society.’ (Stallman 1999:55). While commonly perceived as
technically more efficacious, f/loss also has, ‘social advantage . . . and an
ethical advantage, respecting users freedom.’ (ibid.: 61).

In this self-reflection and description, and indeed in the at present small, but
now rapidly growing scholarly literature around f/loss, some aspects of the
social reality of f/loss are absent. Gender has not figured in a serious way.16
I say ‘serious’ consciously. Part of the self-descriptions one often meets among
f/loss programmers is of awkwardness in social situations. Concerns about
how to attract the opposite sex abound in the narratives and communications

67Freedom Imagined

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

between members of the community. They arise specifically because of a self-
declared ‘culture’ around ‘computer geeks’ emphasising the importance of
long working hours, familiarity with esoteric and alternative languages, and
a dedication to technical tasks which over-ride other considerations.

As Nafus, Krieger and I have suggested, this may be no co-incidence.
The fact that certain aspects of the constitution of the social form of f/loss
do not come under scrutiny internally is a direct effect of the power of the
imagination in relation to software’s potential contribution to a better world.
And that is inextricably bound to the engagement with the material world, the
reality of the machine, and a faith that digital technology will structure our
future social and cultural existence (E. Leach 1968; J. Leach 2005). As Kelty
correctly observes, f/loss ‘is distinguished from other forms and practices
of software production for many reasons, but most interestingly because its
practitioners discuss it not simply in technical terms, but as a philosophy, a
politics, a critique, a social movement, a revolution, or even a “way of life” . . .
It seems to offer an answer to the 21st century question of how we should live’
(Kelty 2004:499). Given these ‘indigenous’ claims, and indeed the undeniable
force of the phenomena as both model for collaborative work and producer
of software it is perhaps not strange that aspects of the relations of production
of the code itself, and how this articulates with the wider role of gendered
positions in technological and it arenas, has until now been absent.

How do I come to this conclusion? There are several factors at work. The
first is that f/loss participants see themselves as operating on a frontier,
with the future potential of well-written code prominent in its valuation. It
opens new horizons, provides new routes ‘forward’. At a wider scale, the
notion of making better software itself positions coders at the edge of what
is possible, driving human advancement. With this level of importance at-
tached to the products of f/loss, other kinds of consideration take second
place. The inseparability of code from valued moral and political principles
reciprocally constitutes the production of code as not only an instantiation
of correct action, but the very materiality of code itself is a proof of the
truth and fitness of these principles. It is here that metonymic extensions of
the functioning of a technology become ‘technologies’ in their own right:
technologies in which imaginative constructions of the future are seen as
plausible because they are extensions of the very processes whereby func-
tional computer code is produced. It is in the confluence of notions of the
real, the aesthetic, the good and the true that the imaginative power of f/
loss is most clearly seen.

68

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

james leach

I have described how the binary character of machine language, and the
thinking necessary to making things work in practice encourages an emphasis
on truth and falsity in the moral and social world as well as the technological.
I have discussed how the ‘openness’ of f/loss software precipitates notions
of the value of freedom and egalitarian community, and I have demonstrated
that the potential for innovation and development in the software renders the
activity as one of ‘frontier exploration’ which clearly has analogies in how the
social movement of f/loss is also seen. It is transformative of society. These
all have consequences for the emergent social form which is f/loss, with
little room for either social niceties in establishing truth, or a mechanism for
considering the make-up of the community. To do so would potentially work
against the values of freedom, autonomy and progress as they are constituted
in f/loss and the imaginative technology which demonstrates to participants
that these good things can be advanced by making better software. Making
good software takes precedence over other objectives because it is the way
to achieve them.

Acknowledgments
 I am grateful to a group of f/loss participants who engaged in constructive dialogue

of the issues around gender and f/loss during a workshop in Cambridge in 2006 (see
Nafus, Leach & Krieger 2006) and in particular, to Hannah Wallach who was both a
facilitator for that workshop and significant interlocutor for the f/losspols project. I
also thank Geoffrey Lloyd and Finn Brunton, the editors of this Special Issue, and the
three anonymous Ethnos reviewers who have all gen erously contributed to the paper.

Notes
 1. From here on, I adopt the term used by f/loss programmers themselves to describe

the people involved in the production of this software: a ‘community’. I am not
making a sociological claim that f/loss is a community, but making an observation
that the idea that f/loss is a community is an ideological component of the social
form that is f/loss. That has effects. These may indeed be the creation of an actual
community, but the mechanisms of that are not my concern in this paper.

 2. f/loss: an acronym for Free/Libre/Open Source Software, and has the advantage
for an outsider of glossing over distinctions between coders and coding projects
based on the community’s internal, and shifting, (political) divisions. There are
many published accounts of the differences between Free Software ideologies, and
Open Source ideologies (e.g. DiBona et al. 1999) but these are not discussed here.
Instead, I undertake an analysis of the generation of an encompassing social form;
the outcome of principles and assumptions which help to form the social interac-
tions through which f/loss software is written.

 3. In this context, ‘hacker’ carries only the connotation of a high level of ability with
writing and understanding the languages in which computer code is written, not
someone with criminal intent.

69Freedom Imagined

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

 4. Bernhard Krieger and Dawn Nafus. See www.flosspols.org.
 5. To (consciously) highlight a term used in f/loss.
 6. For a discussion and analysis of the use of the notion of the (Maussian) Gift among

f/loss participants, and their investment in the notion of there being ‘hacker cul-
ture’ see Kelty (1999, 2004).

 7. www.gnu.org/philosophy/schools.html.
 8. www.gnu.org/philosophy/schools.html.
 9. www.creativecommons.org.
10. http://codicesoftware.blogspot.com/2007/05/linus-torvalds-on-git-and-scm-html.
11. http://radar.oreilly.com/2007/07/why-congress-needs-a-version-c.html.
12. www.efytimes.com/efytimes/21160/news.htm.
13. Richard Stallman. www.gnu.org/philosophy/shouldbefree.html.
14. http://www.spreadfirefox.com/campusreps.
15. Having dwelt on the way discourses around these technologies draw upon ‘natural’

or ‘scientific’ theories of human action and potential in establishing their social
form, I do not here consider the commonly heard recourse to theories of ‘natu-
ral’ differences between male and female brains to explain the low participation of
women. Such theories (which have been present in the ethnography that I have
collected) must be taken as ethnographic data rather than analytic end points.

16. Lin 2005 being an exception.

References
Benkler, Yochai. 2001. Intellectual Property and the Organisation of Information Pro-

duction. International Review of Law and Economics, 22(1):81–107.
—. 2005. Coase’s Penguin, or, Linux and the Nature of the Firm. In CODE: Collabora-

tive Ownership and the Digital Economy, edited by R. Ghosh. Cambridge MA: The
MIT Press.

—. 2006. The Wealth of Networks. New Haven: Yale University Press.
Boyle, James. 1997. Shamans, Software and Spleens: Law and the Construction of the Infor-

mation Society. Cambridge MA: Harvard University Press.
—. 2001. The Second Enclosure Movement and the Construction of the Public Do-

main. www.law.duke.edu/pd/papers/boyle.pdf.
Coleman, E. Gabriella. 2001. High Tech Guilds in the Era of Global Capital. Anthropo-

logy of Work Review, 22(1):28–32.
—. 2004. The Political Agnosticism of Free and Open Source Software and the Inad-

vertent Politics of Contrast. Anthropological Quarterly, 77(3):507–19.
Coleman, E. Gabriella & Alex Golub. 2008. Hacker Practice: Moral Genres and the

Cultural Articulation of Libersalism. Anthropological Theory, 8(3):255–277.
Comino, Stefano., Fabio M. Maneti & Maria L. Parisi. 2005. From Planning to Mature:

On the Determinants of Open Source Take Off. http://opensource.mit.edu/papers/
Comino_Maneti_Parisi.pdf.

DiBona, Chris., Sam Ockman & Mark Stone (eds). 1999. Open Sources: Voices from the
Open Source Revolution. Sebastopol, CA: O’Reilly & Associates.

Downey, Gary L. 1998. The Machine in Me: An Anthropologist Sits Among Computer En-
gineers. London: Routledge.

Free Software Foundation. 1996. The Free Software Definition: Free Software Founda-
tion.

70

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

james leach

Ghosh, Rishab A. 1998. Cooking Pot Markets: An Economic Model for the Trade in
Free Goods and Services on the Internet. First Monday 3(3). www.firstmonday.org.
issues/issue3_3/ghosh/index.html.

—. (ed.). 2005. CODE: Collaborative Ownership and the Digital Economy. Cambridge
MA: The MIT Press.

Ghosh, Rishab A., Rüdiger Glott, Bernhard Krieger & Gregorio Robles. 2002. Free/
Libre and Open Source Software: Survey and Study. Part IV: Survey of Developers. Inter-
national Institute of Infonomics/Merit.

Helmreich, Stefan. 1996. Silicon Second Nature: Culturing Artificial Life in a Digital World.
Berkeley: University of California Press.

Kelty, Christopher. 1999. Hau to do things with words. www.kelty.org/or/index.html.
—. 2004. Culture’s Open Sources: Software, Copyright, and Cultural Critique. Anthro-

pological Quarterly 77 : 499 –506.
—. 2005a. Geeks, Social Imaginaries, and Recursive Publics. Cultural Anthropology, 20(2):

185–214.
—. 2005b. Trust among the Algorithms: Ownership, Identity and the Collaborative

Stewardship of Information. In CODE: Collaborative Ownership and the Digital Eco-
nomy, edited by R. Ghosh. Cambridge MA: The MIT Press.

—. 2008. Two Bits: The Cultural Significance of Free Software. Durham, NC: Duke Univer-
sity Press.

Latour, Bruno. 1999. Pandora’s Hope: Essays on the Reality of Science Studies. Cambridge,
Mass.: Harvard University Press.

Leach, Edmund. 1968. A Runaway World? The 1967 Reith Lectures. London: British
Broad casting Corporation.

Leach, James. 2002. Drum and Voice: Aesthetics and Social Process on the Rai Coast
of Papua New Guinea. Journal of the Royal Anthropological Institute (N.S.), 8(4):713–
734.

—. 2005. Being in Between: Art-Science Collaborations and a Technological Culture.
Social Analysis, 49(1):141–160.

Lessig, Lawrence. 1999. Code and Other Laws of Cyberspace. New York: Basic Books.
—. 2004. Free Culture: How Big Media Uses Technology and the Law to Lock Down Culture

and Control Creativity. New York: Penguin.
Lin, Yuwei. 2005. A Techno-Feminist Perspective on Free/Libre/Open Source Devel-

opment. http://opensource.mit.edu/papers/lin5.pdf.
Love, James. 2003. Prescription for Pain. In Le Monde Diplomatique. Paris.
Mackenzie, Adrian. 2007. Cutting Code: Software and Sociality. New York: Peter Lang.
Michaelson, Greg & Margit Phol. 2001. Gender in E-mail-based Co-operative Problem

Solving. In Virtual Gender: Technology, Consumption, Identity, edited by E. Green & A.
Adam. London: Routledge.

Mosse, David. 2006. Anti-social Anthropology? Objectivity, Objection and the Ethno-
graphy of Public Policy and Professional Communities. Journal of the Royal Anthro-
pological Institute (N.S.), 12: 935– 956.

Nafus, D., J. Leach & B. Krieger. 2006. Free/Libre/OpenSource Software Policy Support:
Gender Track. European Commission.

Nafus, D., B. Krieger & J. Leach. n.d. Patches Don’t Have Gender.
National Science Foundation. 2004. Women, Minorities, and Persons with Disabilities in

Science and Engineering. In NSF 04-317. Arlington, VA: NSF.

71Freedom Imagined

ethnos, vol. 74:1, feb. 2009 (pp. 51–71)

Neff, Gina & David Stark. 2003. Permanently Beta: Responsive Organization in the
Internet Era. In The Internet and American Life, edited by Philip Howard & Steve
Jones. Thousand Oaks, CA: Sage.

Ratto, Matt. 2003. The Pressure of Openness: The Hybrid Work of Linux Free/Open
Source Kernel Developers.

—. 2005. Embedded Technical Expression: Code and the Leveraging of Functionality.
The Information Society, 21(3):1–24.

Raymond, E. 1998. The Cathedral and the Bazaar. First Monday, 3(3). http://www.
firstmonday.org/issues/issue3_3/raymond/

—. 1999. The Revenge of the Hacker. In Opensources: Voices from the Open Source Revolu-
tion, edited by Chris DiBona, Sam Ockman & Mark Stone. Sebastopol, CA: O’Reilly
and Associates.

Scott, A., L. Semmens & R. Willoughby. 2001. Women and the Internet: The Natural
History of a Research Project. In Virtual Gender: Technology, Consumption and Identity
(eds) E. Green & A. Adam. London: Routledge.

Stallman, Richard. 1999. The gnu Operating System and the Free Software Movement.
In Open Sources: Voices from the Open Source Revolution, edited by Chris DiBona, Sam
Ockman & Mark Stone. Sebastopol, CA: O’Reilly Associates.

Strathern, Marilyn. 1992. After Nature: English Kinship in the Late Twentieth Century.
Cambridge: Cambridge University Press.

—. 1999. Property, Substance and Effect: Anthropological Essays on Persons and Things.
London: Athalone Press.

Turkle, Sherry. 1998. Computational Reticence: Why Women Fear the Intimate Ma-
chine. In Sex/Machine: Readings in Culture, Gender and Technology, edited by P. Hop-
kins. Bloomington: Indiana University Press.

Ullman, Ellen. 1997. Close to the Machine: Technophilia and its Discontents. San Francisco:
City Lights Books.

Vaidhyanathan, Siva. 2001. Copyrights and Copywrongs: The Rise of Intellectual Property
and How It Threatens Creativity. New York: New York University Press.

—. 2006. Afterword: Critical Information Studies: A Bibliographic Manifesto. Cultural
Studies, 20(2–3):292–315.

Weber, Steven. 2004. The Success of Open Source. Cambridge M.A.: Harvard University
Press.

Whitehead, A.N. 1929. Process and Reality. New York: Macmillan.
Zeitlyn, David. 2003. Gift Economies in the Development of Open Source Software:

Anthropological Reflections. Research Policy, 32(7):1287–1291.

